CALCULATION OF SPATIAL FRAME WORK FROM EXTERNAL LOADING ACTION BY COMPLETE ELEMENT METHOD

Authors

  • В. В. Дєвін State Agrarian and Engineering University in Podilya, Ukraine
  • В. С. Ткачук State Agrarian and Engineering University in Podilya, Ukraine

Keywords:

метод кінцевих елементів, матриця жорсткості, просторова ферма

Abstract

The tasks of structural mechanics are complicated by issues of analytical and calculative character; even in terms of simple support flat joint-cored systems (frame work; tie bar). If we examine the spatial jointcored systems the increase of amount of elements of such constructions results in heavy computing; static indefinable tasks are not an exeption. If the joint-cored system has the external loading and works within the limits of resiliency of material of its elements; then assembling tensions should be added to tensions that arise up in the process of loading the construction; the same happens in terms of system deformations. The spatial joint-cored systems where the tensely-deformed state from the appendix of the key loading takes place are considered. The application of eventual elements method provides the decision of the research on NDS system at its arbitrary geometry.To form the matrix of inflexibility the original program is made in algorithmic language that includes complete research not depending on degrees of static indefinableness of fframework. Examples of concrete tasks decision are made by the method of forces and machine method.

Author Biographies

В. В. Дєвін, State Agrarian and Engineering University in Podilya

Ph.D. (Techn.), Associate Professor Department of Physical-mathematical and general-technical disciplines

В. С. Ткачук, State Agrarian and Engineering University in Podilya

Ph.D. (Techn.), Associate Professor Department of Physical-mathematical and general-technical disciplines

References

Snytko, N.K. (1972). Stroytel'naia mekhanyka [Structural mechanics]. Moskow : Vysshaia shkola [in Russian].

Darkov A.V. (Ed.). (1976). Stroytel'naia mekhanyka [Structural mechanics]. Moskow : Vysshaia shkola [in Russian].

Zhurbyn, O.V. (2004). Analyz ynzhenernykh konstruktsyj metodom konechnykh elementov Ucheb. Posobye [Analysis of engineering structures by the finite element method]. Komsomol'sk-na-Amure: HOUVPO«KnAHTU» [in Russian].

Pysarenko, H.S. (1979). Soprotyvlenye materyalov. 5-e yzd. pererab. y dop [Strength of materials (5 ed.)]. Kyiv : Vyscha shkola [in Russian].

Beliaev, N.M. (1954). Soprotyvlenye materyallov [Strength of materials]. Moskow : Holovnoe yzdatel'stvo [in Russian].

Feodos'ev, V.Y. (1970). Soprotyvlenye materyalov [Strength of materials]. Moskow : Nauka, 1970. 544 p. [in Russian].

Hallaher, R. (1984). Metod konechnykh elementov, osnovy ; Per. s anhl. V.M. Kartveshvyly; Pod red. N.V. Banychuka [Finite Element Method (V.M. Kartveshvyly, Transl.)]. Moskow : Myr [in Russian].

Zenkevych, O. (1975). Metod konechnykh elementov v tekhnyke ; per. s anhl.; pod red. B.E. Pobedry [Finite element method in engineering. This is a Chapter (B.E. Pobedry (Ed.) transl.]. Moskow : Myr [in Russian].

Zenkevych, O., & Chanh, Y. (1974). Metod konechnykh elementov v teoryy sooruzhenyj y mekhanyke sploshnykh sred Per. s anhl. O.P. Troytskoho y S.V. Solov'eva; Pod red. Yu.K.Zaretskoho [The finite element method in the theory of structures and the mechanics of continuous media (Yu.K.Zaretskiy, Ed. Transl.)]. Moskow : Nedra [in Russian].

Vasyl'eva, V.N. (1986). Vvedenye v teoryiu metoda konechnykh elementov [Introduction to the theory of the finite element method]. Irkutsk : Yzd-vo Yrkut. un-ta. [in Russian].

Published

2017-05-21

How to Cite

Дєвін, В. В., & Ткачук, В. С. (2017). CALCULATION OF SPATIAL FRAME WORK FROM EXTERNAL LOADING ACTION BY COMPLETE ELEMENT METHOD. Podilian Bulletin: Agriculture, Engineering, Economics, 2(26), 23–36. Retrieved from http://pb.pdatu.edu.ua/article/view/118995