MODEL OF SENSITIVITY CATTLE TO MASTITIS ON THE BASIS OF LYMPHOCYTIC AND MOLECULAR GENETIC MARKERS

Authors

  • T. М. Suprovych Higher Educational Institution “Podillia State University”, Ukraine
  • M. P. Suprovych Higher Educational Institution “Podillia State University”, Ukraine
  • L. V. Strojanovska Higher Educational Institution “Podillia State University”, Ukraine
  • I. O. Chornyi Higher Educational Institution “Podillia State University”, Ukraine

DOI:

https://doi.org/10.37406/2706-9052-2022-110

Keywords:

mastitis, cattle, major histocompatibility complex, lymphocytic antigens, BoLA-DRB3 gene, alleles, polymorphism, DNA marker

Abstract

Mastitis of cows causes significant harm to dairy farming, a susceptibility to which is partly determined by genetic factors. Therefore, identifying the susceptibility or resistance of cows to mastitis at an early stage of postnatal ontogenesis has both practical and scientific importance. In this work, we examined a model grounded on the collegial use of lymphocyte antigens class I MHC cattle and DNA markers based on alleles BoLA-DRB3 gene to identify the sensitivity of heifers to mastitis to their use in a milking herd. On the data of testing of 649 cows of the Ukrainian black-and-white breed, the antigens of histocompatibility were revealed, and the statusmetric model facilitated determining the integral estimation of sensitiveness (Z) to mastitis was constructed. The greater the positive Z value, the higher the predicted resistance to mastitis and vice versa. The model yields 69.2% correct mastitis susceptibility decisions based on 17 class I antigens (antigens W2, W6, W31, W14, W19, W15, A9, A12, A13 and A24 indicate susceptibility and W10, A1, A3, A6, A16, A17 and A22 – indicate resistance to the disease). Some exon 2 alleles of the BoLA-DRB3 gene were found to be associated with mastitis. For 162 cows from the preliminary sample DRB3.2*18, *24, *26 and *48 alleles characterize susceptibility to mastitis, and BoLA-DRB3.2*08, *13 and *22 – characterize resistance to the disease. A comparative analysis of the association of lymphocyte and DNA-markers was performed by comparing the diagnosis, status score, and the presence of associated alleles in the genotype. Two of the four possible variants unambiguously indicate the immune status of the cow: – diagnosis and integral score (by sign) coincide, and there is an allele in the genotype that coincides with the established diagnosis (65,7%); – diagnosis and integral score sign do not coincide, and there is a DNA marker in the genotype that coincides with the immune status of the animal by Z (13,3%). For 83 animals out of 105 in which DNA markers were detected, the immune status established by the statusmetric model was confirmed, for a total of 79%. The accuracy in predicting the susceptibility of cows to mastitis increased by 9.8%. Following the obtained results, the model for predicting sensitivity of heifers of Ukrainian black-and-white breed to mastitis at the stage of early postembryonic ontogenesis has been proposed. The model is universal and can be applied to different cattle breeds after appropriate research.

Author Biographies

T. М. Suprovych, Higher Educational Institution “Podillia State University”

Doctor of Agricultural Sciences, Professor,
Head of the Department of Animal Hygiene and Veterinary Support for the Cynological Service of the National Police of Ukraine

M. P. Suprovych, Higher Educational Institution “Podillia State University”

Candidate of Technical Sciences, Associate Professor, Associate Professor of the Department of Physics,
Labor Protection and Environmental Engineering of Educational and Scientific Institute of Energy

L. V. Strojanovska, Higher Educational Institution “Podillia State University”

Postgraduate of the Department of Animal Hygiene and Veterinary Support for the
Cynological Service of the National Police of Ukraine

I. O. Chornyi, Higher Educational Institution “Podillia State University”

Assistant Professor of the Department of Animal Hygiene and Veterinary Support for the
Cynological Service of the National Police of Ukraine

References

Holland, J.K., Hadrich, J.C., Wolf, C.A., & Lombard, J. Economics of measuring costs due to mastitis-related milk loss. (2015). In: Agricultural and Applied Economics Association (AAEA) > 2015 AAEA & WAEA Joint Annual Meeting, July 26–28, San Francisco, California. P. 2–18.

Hogeveen, H., Huijps, K., & Lam, T.J. (2011). Economic aspects of mastitis: new developments. New Zealand veterinary journal, 59 (1), 16–23. DOI: 10.1080/00480169.2011.547165.

Singh, U., Deb, R., Alyethodi, R., Alex, R., Kumar, S., Chakraborty, S., Dhama, K., & Sharma, A. (2014). Molecular markers and their applications in cattle genetic research : A review. Biomarkers and Genomic Medicine, 6, 49–58. DOI: 10.1016/j.bgm.2014.03.001.

Zareckaja, J.M., & Abramov, V.J. (1986). Novye antigeny tkanevoj sovmestimosti cheloveka (HLA-DR: teorija, klinika, praktika) [New human tissue compatibility antigens (HLA-DR: theory, clinic, practice)]. Moskva : Medicina.

Sulimova, G.E. (2006). DNK-markery v izuchenii genofonda porod krupnogo rogatogo skota. Genofondy sel’skohozjajstvennyh zhivotnyh: geneticheskie resursy zhivotnovodstva [DNA markers in the study of the gene pool of cattle breeds]. Moskva : Nauka. P. 38–166.

Slepchenko, A.R. (1994). Glavnyj kompleks gistosovmestimosti sel’skohozjajstvennyh zhivotnyh: immunogeneticheskie i populjacionnye aspekty [Main histocompatibility complex of farm animals: Immunogenetic and population aspects] Uspehi sovremennoj genetiki. Moskva : Nauka, 19. P. 178–205.

Werner, F.A., Durstewitz, G., Habermann, F.A., Thaller, G., Krämer, W., Kollers, S., Buitkamp, J., Georges, M., Brem, G., Mosner, J., & Fries, R. (2004). Detection and characterization of SNPs used for identity control and parentage testing in major European dairy breeds. Animal Genetics, 35 (1), 44–49. DOI: 10.1046/j.1365-2052.2003. 01071.x.

Suprovich, T.M., & Glushhenko, M.A. (1995). Harakter raspredelenija antigenov gistosovmestimosti v krovi krupnogo rogatogo skota kostromskoj porody [Distribution pattern of histocompatibility antigens in blood of cattle of Kostroma breed] Molodye uchenye – rossijskomu obrazovaniju : mezhvuz. sb. nauch. tr. Kostroma : KGPU. P. 95–98.

Suprovich, T.M. (1996). Raspredelenie antigenov BoLA sistemy u rezistentnyh i chuvstvitel’nyh k mastitam korov [Distribution of BoLA antigens in mastitis-resistant and susceptible cows]. Aktual’nye problemy nauki v APK. Kostroma. P. 48–49.

Dusinsky, R., Simon, M., & Nouzovska, D. (1987). Study of bovine lymphocyte antigens in the Slovac pied breed population. Annual report of the Institute of Animal Physiology (Slovak Academy of Sciences), 7, 35–43.

Stear, M.J., & Mackie, J.T. (1987). Joint inheritance of bovine major histocompatibility system antigens W6 and W11. Animal Genetics, 18 (1), 71–74. DOI: 10.1111/j.1365-2052.1987.tb00745.x.

Spooner, R.L., Leveziel, H., Grosclaude, F., Oliver, R.A., & Vaiman, M. (1978). Evidence for a possible major histocompatibility complex (BLA) in cattle. Journal Immunogenetic, 5 (5), 325–346. PMID: 570208.

Rupp, R., Hernandez, A., & Mallard, B. (2007). Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. Journal Dairy Science, 90 (2), 1029–1038. DOI: 10.3168/jds.S0022-0302(07) 71589-8.

Kulberg, S., Heringstad, B., Guttersrud, O., & Olsaker, I. (2007). Study on the association of BoLA-DRB3.2 alleles with clinical mastitis in Norwegian Red cows. Journal of Animal Breeding and Genetics, 124 (4), 201–217. DOI: 10.1111 /j. 1439-0388.2007.00662.x.

Yoshida, T., Furuta, H., Kondo, Y., & Mukoyama, H. (2012). Association of BoLA-DRB3 alleles with mastitis resistance and susceptibility in Japanese Holstein cows. Animal Science Journal. 83 (5), 359–366. DOI: 10.1111/j.1740-0929.2011.00972.x.

Suprovych, T.M., Suprovych, M.P., Koval, T.V., Karchevska, T.M., Chepurna, V.A., Chornyi, I.O., & Berezhanskyi A.P. (2018). BoLA-DRB3 gene as a marker of susceptibility and resistance of the Ukrainian black-pied and red-pied dairy breeds to mastitis.

Regulatory Mechanisms in Biosystems, 9 (3), 363–368. DOI: 10.15421/ 021853.

Suprovych, T.M., Suprovych, M.P., Chornyj, I.O. (2021). Gen BoLA-DRB3 jak marker chutlyvosti do mastytiv ukrai’ns’kyh porid VRH [Bola-DRB3 gene as a marker of sensitivity to the mastitis of Ukrainian breeds of cattle] Suchasni metody diagnostyky, likuvannja ta profilaktyka u veterynarnij medycyni. L’viv : SPOLOM, 146–147.

Razorenov, G.I., & Poddubskij, G.A. (1986). Avtomatizirovannaja kolichestvennaja ocenka i analiz sostojanija organizma (medicinskaja statusmetrija) [Automated quantitative assessment and analysis of body condition (medical status measurement)]. Leningrad : Preprinty LIIAN.

Jernst, L.K., Shishkov, V.P., Orlova, A.R., Pavlenko, S.P., Sulimova, G.E., & Udina, I.G. (1998). Molekuljarnogeneticheskie i statisticheskie metody izuchenija Glavnogo kompleksa gistosovmestimosti krupnogo rogatogo skota v svjazi s ustojchivost’ju i vospriimchivost’ju k lejkozam : metod. Rekomendacii [Molecular genetics and statistical methods for studying the Main Histocompatibility Complex in cattle in relation to resistance and susceptibility to leukemia : methodological guidelines]. Moskva.

Kissmeyer-Nielsen, F., & Thorsby, E. (1973). Lymphocytotoxic microtechnique. Manual of tissue typing technicues. NIH.

Sulimova G.E. (2004). DNK-markery v geneticheskih issledovanijah: tipy markerov, ih svojstva i oblasti primenenija [DNA markers in genetic research: types of markers, their properties and applications]. Uspehi sovremennoj biologii. 124. P. 260–271.

Suprovych, T.M. (2013). Vykorystannja limfocytarnyh i DNK-markeriv MNS-systemy dlja vyjavlennja koriv rezystentnyh abo chutlyvyh do mastytiv [Use of lymphocyte and DNA-markers MHC to detect cows resistant or susceptible to mastitis] Visnyk SNAU. Serija “Veterynarna medycyna”. Sumy. 9 (33). P. 179–184.

Published

2023-02-14

How to Cite

Suprovych T. М., Suprovych, . M. P., Strojanovska, L. V., & Chornyi, I. O. (2023). MODEL OF SENSITIVITY CATTLE TO MASTITIS ON THE BASIS OF LYMPHOCYTIC AND MOLECULAR GENETIC MARKERS. Podilian Bulletin: Agriculture, Engineering, Economics, (36), 73–78. https://doi.org/10.37406/2706-9052-2022-110

Issue

Section

Veterynary Sciences