FEATURES OF DIAGNOSIS OF NECROBACTERIOSIS OF COWS BY PCR-RFLP
DOI:
https://doi.org/10.37406/2706-9052-2020-1-3Keywords:
BOLA-DRB3 gene, alleles, polymorphism, necrobacteriosis, cattle, electrophoregram, patternAbstract
Molecular genetic markers can detect polymorphism at the DNA level. This feature determines the possibility of their widespread use in genetics and breeding. Alleles of the BoLA-DRB3 gene (exon 2) can act as such markers if a statically significant association between the disease and the allele is established. The presence of such DNA markers in the genotype of animals makes it possible to judge the likelihood of disease in postnatal ontogenesis immediately after the birth of a heifer, based on which we can conclude about the conditions of further use of the animal in the main herd. According to the results of studying the polymorphism of the BoLA-DRB3 gene in cows of the Ukrainian black and white dairy breed resistant and susceptible to necrobacteriosis, four "informative" alleles were revealed. Two of them *03 and *22 are associated with resistance, and the other two - *16 and *23 with susceptibility to necrobacteriosis. The presence of these alleles in the genotype of the animal is determined by testing performed by PCR-RFLP. The method is time consuming, labor intensive and costly. To simplify it, the following technique is proposed. Restriction fragments of alleles *03, *16, *22 and *23 for endocluases RsaI, XhoII and HaeIII have the following DNA patterns: bbb, jbd, mba and nba. Due to the peculiarity of the restriction fragments, which is that endonuclease XhoII reveals in these alleles only one pattern b with length of 284 bp, the process of determining informative alleles can be simplified. Isolation of DNA from blood samples and amplification of a fragment of the BoLA-DRB3.2 gene with a size of 284 bp is carried out according to the established technique. Next, the restriction of the fragment by endonuclease XhoII and sampling having a pattern b. Selected samples are treated with RsaI endonuclease and only those with patterns b, j, m and n remain. The next step is to restrict the selected samples with HaeIII endonuclease and select heifers with bbb (*03) and nba (*23) genotypes. After the first restriction, blood samples without pattern b are eliminated from the experimental sample; after the second – two alleles with patterns RsaI + XhoII jb (*16) and mb (*22) are unambiguously determined, after the third – genotypes bbb and nba, which correspond to alleles *03 and *23. In total, only 75% of blood samples are typed, which reduces the material consumption, time and cost of work to identify heifers genetically susceptible (resistant) to necrobacteriosis.References
Adams, A. E., Lombard, J. E., Fossler, C. P., Román-Muñiz, I. N., & Kopra, C. A. (2017). Associations between housing and management practices and the prevalence of lameness, hock lesions, and thin cows on US dairy operations. Journal of Dairy Science, 100, 2119-2136. https://doi.org/10.3168/jds.2016-11517.
Dolecheck, K., & Bewley, J. (2018). Animal board invited review: Dairy cow lameness expenditures, losses and total cost. Animal, 12(7), 1462-1474. doi: 10.1017/S1751731118000575.
Suprovych, T. M., Suprovych, M. P., & Kolinchuk, R. V. (2016). Naslidky "golshtynizacii'" ukrai'ns'koi' chorno-rjaboi' molochnoi' porody za genom BoLA-DRB3.2 [Consequences of “holsteinization” of Ukrainian black-pied dairy breed by gene BoLA-DRB3.2]. Animal breeding and genetics, 52, 114-119.
Stavec'ka R. (2015). Golshtynizacija: koly zupynytysja [Holsteinization: when to stop]. The Ukrainian Farmer, 12,144-145.
Sun, L., Song, Y., Riaz, H. & Yang, L. (2013). Effect of BoLA-DRB3 exon 2 polymorphisms on lameness of Chinese Holstein cows. Molecular Biology Reports, 40(2), 1081-1086. doi: 10.1007/s11033-012-2150-6.
Kulberg, S., Heringstad, B., Guttersrud, O., & Olsaker, I. (2007). Study on the association of BoLA-DRB3.2 alleles with clinical mastitis in Norwegian Red cows. Journal of Animal Breeding and Genetics, 124(4), 201-217. doi: 10.1111 /j. 1439-0388.2007.00662.x.
Juliarena, M., Poli, M., Sala, L., Ceriani, C., Gutierrez, S., Dolcini, G., Rodríguez, E., Mariño, B., Rodríguez-Dubra, C., & Esteban, E. (2008). Association of BLV infection profiles with alleles of the BoLA-DRB3.2 gene. Animal Genetics, 39(4), 432-438.
Nikbakht Brujeni, G., Ghorbanpour, R., & Esmailnejad, A. (2016). Association of BoLA-DRB3.2 alleles with BLV infection profiles (Persistent lymphocytosis / Lymphosarcoma) and Lymphocyte Subsets in Iranian Holstein Cattle. Biochemical genetics, 54(2), 194-207. doi: 10.1007/s10528-016-9712-6.
Suprovych, T. M., Suprovych, M. P., Koval, T. V., Karchevska, T. M., Chepurna, V. A., Chornyi, I. O., & Berezhanskyi A. P. (2018). BoLA-DRB3 gene as a marker of susceptibility and resistance of the Ukrainian black-pied and red-pied dairy breeds to mastitis. Regulatory Mechanisms in Biosystems, 9(3), 363-368. doi:10.15421/ 021853.
Lei, W., Liang, Q., Jing, L., Wang, C., Wu, X., & He, H. (2012). BoLA-DRB3 gene polymorphism and FMD resistance or susceptibility in Wanbei cattle. Molecular Biology Reports, 39(9), 9203-9209. doi: 10.1007/s11033-012-1793-7.
Duangjinda, M., Jindatajak, Y., Tipvong, W., Sriwarothai, J., Pattarajinda, V., Katawatin, S., & Boonkum, W. (2013). Association of BoLA-DRB3 alleles with tick-borne disease tolerance in dairy cattle in a tropical environment. Veterinary Parasitology, 196(3-4), 314-20. doi: 10.1016/j.vetpar.2013.03.005.
Suprovych, T. M., Suprovych, M. P., Karchevska, T. M., Kolinchuk, R. V., Chornyi, Ι. Ο., & Kolodiy, V. Α. (2020). Association of BoLA-DRB3.2 alleles with cow’s fusobacteriosis. Regulatory Mechanisms in Biosystems, 11(2), 249-254. doi: doi.org/10.15421/022037.
Kumar, A., Gaur, G.K., Gandham, R.K., Panigrahi, M., Ghosh, S., Saravanan, B.C., Bhushan, B., Tiwari, A.K., Sulabh, S., Priya, B., Ma, V.N., Gupta, J.P., Wani, S.A, Sahu, A.R., & Sahoo, A.P. (2017). Global gene expression profile of peripheral blood mononuclear cells challenged with Theileria annulata in crossbred and indigenous cattle. Infection, Genetics and Evolution, 47, 9-18. https://doi.org/10.1016/j.meegid.2016.11.009.
Juliarena, M., Poli, M., Sala, L., Ceriani, C., Gutierrez, S., Dolcini, G., Rodrıguez, E., Marino, B., Rodrıguez-Dubra, C., & Esteban, E. (2008). Association of BLV infection profiles with alleles of the BoLA-DRB3.2 gene. Animal genetics, 39, 432-439. doi: 10.1111/j.1365-2052.2008.01750.x.
Haikukutu, L., Itenge, T., Bosman, L., & Visser, C. (2017). Genetic variability of the major histocompatibility complex (MHC) class II (DRB3) in South African and Namibian beef cattle breeds. Advances in Animal Biosciences, 8(s1), 19-21. doi: 10.1017/S2040470017001625.
Ruzina, M. N., Shtyfurko, T. A., Mohammad Abad, M. R., Gendzhieva, O. B., Cedev, C., & Sulimova, G. E. (2010). Polymorphism of the BoLA-DRB3 Gene in the Mongolian, Kalmyk, and Yakut Cattle Breeds. Russian Journal of Genetics, 46(4), 517-525. doi: 10.1134/S1022795410040113.
Giovambattista, G., Ripoli, M.V., Peral-Garcia, P., & Bouzat, J.L. (2001). Indigenous domestic breeds as reservoirs of genetic diversity: the Argentinean Creole cattle. Animal genetics, 32, 240-247. https://doi.org/10.1046/j. 1365-2052.2001.00774.x.
Takeshima, S., Miyasaka, T., Matsumoto, Y., Xue, G., Diaz, V., Rogberg-Munoz, A., Giovambattista, G., Ortiz, M., Oltra, J., Kanemaki, M., Onuma, M., & Aida, Y. (2015). Assessment of biodiversity in Chilean cattle using the distribution of major histocompatibility complex class II BoLA-DRB3 allele. Tissue Antigens, 85(1), 35-44. doi: 10.1111/ tan.12481.
Takeshima, S., Miyasaka, T., Polata, M., Kikuya, M., Matsumoto, Y., Mingala, C., Villanueva, M., Salces, A., Onuma, M., & Aida, Y. (2014). The great diversity of major histocompatibility complex class II genes in Philippine native cattle. Meta Gene, 2, 176-190. doi: 10.1016/j.mgene.2013.12.005.
Das, D. N., Sri Hari, V. G., Hatkar, D. N., Rengarajan, K., Saravanan, R., Suryanarayana, V. V., & Murthy, L. K. (2012). Genetic diversity and population genetic analysis of bovine MHC class II DRB3.2 locus in three Bos indicus cattle breeds of Southern India. International journal of Immunogenetics, 39(6), 508-519. doi: 10.1111/j.1744-313X. 2012.01126.x.
Miyasaka, T., Takeshima, S.N., Sentsu, H., & Aida, Y. (2012). Identification and diversity of bovine major histocompatibility complex class II haplotypes in Japanese black and Holstein cattle in Japan. Journal of Dairy Science, 95(1), 420-431. doi: 10.3168/jds.2011-4621.
Nascimento, C. S., Machado, M. A., Martinez, M. L., Silva, M., Guimarães, M., Campos, A., Azevedo, A., Teodoro, R., Verneque, R., Guimarães, S., & Oliveira, D. (2006). Association of the bovine major histocompatibility complex (BoLA) BoLA-DRB3 gene with fat and protein production and somatic cell score in Brazilian Gyr dairy cattle (Bos indicus). Genetics and Molecular Biology, 29(4), 641-647. doi: 10.1590/S1415-47572006000400011.
Rupp, R., Hernandez, A., & Mallard, B. (2007). Association of bovine leukocyte antigen (BoLA) DRB3.2 with immune response, mastitis, and production and type traits in Canadian Holsteins. Journal Dairy Science, 90(2), 1029-1038. doi: 10.3168/jds.S0022-0302(07) 71589-8.
Singh, U., Deb, R., Alyethodi, R., Alex, R., Kumar, S., Chakraborty, S., Dhama, K., & Sharma, A. (2014). Molecular markers and their applications in cattle genetic research: A review. Biomarkers and Genomic Medicine, 6, 49-58. doi: 10.1016/j.bgm.2014.03.001.
Sulimova G. E. (2004). DNK-markery v geneticheskih issledovanijah: tipy markerov, ih svojstva i oblasti primenenija [DNA markers in genetic research: types of markers, their properties and applications]. Uspehi sovremennoj biologii, 124, 260-271.
Van Eijk, M. J. T., Stewart-Haynes, J. A., & Lewin, H. A. (1992). Extensive polymorphism of the BoLA-DRB3 gene distinguished by PCR-RFLP. Animal Genetics, 23(6), 483-496. https://doi.org/10.1111/j.1365-2052.1992. tb00168.x.
Gelhaus, A., Schnittger, L., Mehlitz, D., Horstmann, R. D., & Meyer, C. G. (1995). Sequence and PCR-RFLP analysis of 14 novel BoLADRB3 alleles. Animal Genetics, 26(3), 147-153. doi:10.1111/j.1365-2052.1995.tb03154.x.
Maillard, J.C., Renard, C., Chardon, P., Chantal, I., & Bensaid, A. (1999). Characterization of 18 new BoLA-DRB3 alleles. Animal Genetics, 30, 200-203. doi: 10.1046/j.1365-2052.1999.00446.x.
Kozlov, A. L. (2016). Polimorfizm gena BoLA-DRB3 kak marker ocenki geneticheskogo raznoobraziya i ustojchivosti k virusu lejkoza molochnogo skota Bryanskoj oblasti [BoLA-DRB3 gene polymorphism as a marker for assessing genetic diversity and resistance to leukemia virus in dairy cattle in the bryansk region]: Thesis for a degree in Biology Sciences (PhD), Stavropol (in Russian).
Suprovych, T. M., Karchevs'ka, T. M., Kolinchuk, R. V., & Mizyk, V. P. (2016) Vyjavlennja aleliv gena BOLA-DRB3.2, asocijovanyh z nekrobakteriozom u koriv ukrai'ns'koi' chorno-rjaboi' molochnoi' porody [Determination of alleles of BoLA-DRB3.2 gene associated withnecrobacteriosis of the cows of ukrainian black-and-white dairy cattle]. Animal breeding and genetics, 51, 205-213.**
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Podilian Bulletin: Agriculture, Engineering, Economics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors contributing to Public Policy and Administration agree to publish their articles under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit, and that in the event of reuse or distribution, the terms of this licence are made clear.