GENERAL OBJECT-ORIENTED MODEL FOR THE SYNTHESIS OF COATING AND TREATMENT DEPOSITION TECHNOLOGY

М. Г. Петров, В. В. Головятинская, А. М. Петров, А. Т. Цыркин А.Т.

Abstract


The well-known general object-oriented model for the synthesis in the structure of function-oriented technological process involves the analysis of products that have constructive solutions to their functional elements. However, when synthesizing the technology for applying and processing detonation coatings, it is rational to choose the structure of the functional elements of detonation coatings according to functional and technological feasibility. The aim of the work is to develop a general object-oriented model for the synthesis in the structure of the technology of applying and processing detonation coatings. The development methodology is based on the fact that the choice of the objective implementation of the functional elements of the detonation coating is carried out on the basis of providing them with operational functions. The developed general object-oriented model for the synthesis in the structure of the technology of applying and processing detonation coatings and the established scheme of interactions between the modules of this model, and, accordingly, between the levels of analysis, allow the choice of functional elements structure in the detonation coating. The analysis of modifications of detonation coatings is carried out according to the depth of the technology at the levels of their structure: areas and layers formed by single spots of the coating; single patches of coverage; and at the levels of structures - macro, micro and nanostructures. The principles of analysis and decision-making make it possible to choose the objective implementation of the functional elements for the detonation coating based on their operational functions. In addition, these principles can be used in the synthesis of function-oriented technological processes for products with a flexible structure of functional elements

Keywords


objective-oriented model; the synthesis of function-oriented technologies; the synthesis technology of the application and processing of detonation coatings; operational functions; operational effects

References


Luzan, C. A., Gorbachevskaja, O. M., & Bisha, V. M. (2012). Analiz sposobov podgotovki poverhnostej detalej dlja napylenija gazotermicheskih pokrytij. Mehanіka ta mashinobuduvannja, 1, 124-128. [in Russian]

Mihajlov, A. N. (2009). Osnovy sinteza funkcional'no-orientirovannyh tehnologij mashinostroenija. Doneck: DonTU. [in Russian]

Bartenev, S. S., Fed'ko Ju. P., & Grigorov, A. I. (1982). Detonacionnye pokrytija v mashinostroenii. Leningrad : Mashinostroenie [in Russian]

Zverev A. I., Sharivker S. Ju., & Astahov E. A. (1979). Detonacionnoe napylenie pokrytij. Leningrad : Sudostroenie

Hasui A., & Morigaki O. (1985). Naplavka i napylenie. Moskva : Mashinostroenie. [in Russian]

Rumjanceva K. E. (2007). Fizicheskie i tehnologicheskie svojstva pokrytijju. Ivanovo : GOU VPO Ivan. gos. him.-tehnol. un-t. [in Russian]

Mihajlov A. N., Petrov M. G., Golovjatinskaja V. V., & Petrov A. M. (2012). Povyshenie iznosostojkosti pary trenija za schet funkcional'no-orientirovannyh pokrytij: Les problèmes contemporains de la technosphère et de la formation des cadres d’ingènieurs. Recueil des exposès des participants de la VI Confèrence internationale scientifique et mèthodique sur l’ile de Djerba du 11 au 18 octobre 2012. Donetsk : UNTD, 2012. P. 196-199. [in Russian]

GOST 28076-89 Gazotermicheskoe napylenie. Terminy i opredelenija. Data vvedenija 01.07.1990. Moskva : Gosudarstvennyj komitet SSSR po standartam, 1989. [in Russian]

Mihajlov A. N., Mihajlov D. A., Grubka R. M., & Petrov M. G. (2015). Povyshenie dolgovechnosti detalej mashin na baze funkcional'no-orientirovannyh pokrytij: Naukoemkie tehnologii v mashinostroenii, 7 (49), 30-39. [in Russian]


GOST Style Citations


Лузан C. А., Горбачевская О. М., Биша В. М. Анализ способов подготовки поверхностей деталей для напыления газотермических покрытий: Сборник научных работ НТУ ХПИ, научно- технический журнал "Механіка та машинобудування". 2012. № 1. С. 124-128.

Михайлов А. Н. Основы синтеза функционально-ориентированных технологий машиностроения. Донецк: ДонТУ, 2009. 346 с.

Бартенев С. С., Федько Ю. П., Григоров А. И. Детонационные покрытия в машиностроении. Ленинград : Машиностроение, 1982.
215 с.

Зверев А. И., Шаривкер С. Ю., Астахов Е. А. Детонационное напыление покрытий. Ленинград : Судостроение, 1979. 232 с.

Хасуи А., Моригаки О. Наплавка и напыление. Москва : Машиностроение, 1985. 240 с.

Румянцева К. Е. Физические и технологические свойства покрытийю Иваново : ГОУ ВПО Иван. гос. хим.-технол. ун-т., 2007. 80 с.

Михайлов А. Н., Петров М. Г., Головятинская В. В., Петров А. М. Повышение износостойкости пары трения за счет
функционально-ориентированных покрытий: Les problèmes contemporains de la technosphère et de la formation des cadres d’ingènieurs. Recueil des exposès des participants de la VI Confèrence internationale scientifique et mèthodique sur l’ile de Djerba du 11 au 18 octobre 2012. Donetsk : UNTD, 2012. P. 196-199.

ГОСТ 28076-89 Газотермическое напыление. Термины и определения. Дата введения 01.07.1990. Москва : Государственный комитет
СССР по стандартам, 1989. 10 с.

Михайлов А. Н., Михайлов Д. А., Грубка Р. М., Петров М. Г. Повышение долговечности деталей машин на базе
функционально-ориентированных покрытий: Наукоемкие технологии в машиностроении. Москва : Машиностроение, № 7 (49), 2015. С. 30-39.




Copyright (c) 2019 PODILIAN BULLETIN: AGRICULTURE, ENGINEERING, ECONOMICS